Individual Round - Grade 6

Name: \qquad Team \# \qquad School: \qquad
\qquad 1. From this group which is the largest fraction $\left\{\frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{5}{10}\right\}$?
\qquad 2. David drove the first 18 km of his $\mathbf{5 4} \mathbf{~ k m}$ drive to Marmora when he stopped for a juice break. What fraction of his overall trip is left for him to complete?
\qquad 3. In the diagram, each small square in the grid is the same size. What percent of the grid is shaded?

\qquad 4. What number is B ? $(5 \times 1)+(5 \times 2)+(5 \times 3)+(5 \times 4)=5 \times B$
\qquad 5. How many weeks is 103 days nearly?
6. Write $6 \frac{3}{7}$ as an improper fraction in the form $\frac{A}{B}$. What is $\mathrm{A}+\mathrm{B}$?
\qquad 7. Aidan saves 60% of his weekly allowance and spends the rest. His allowance is $\$ 10$ a week. How much will he spend over two weeks?
\qquad 8. A point T has coordinates $(5,-3)$. What is the sum of the coordinates after the point is translated 6 units up and 3 units to the left?
\qquad 9. A rectangular prism has a volume of $186 \mathrm{~cm}^{3}$. The area of the base is $31 \mathrm{~cm}^{2}$. What is its height?
\qquad 10. Winnie paid $\$ 6.99$ for 3 tennis balls. How much would Winnie pay for 15 tennis balls?
\qquad 11. Two trains are heading towards each other at $30 \mathrm{~m} / \mathrm{s}$. They are initially $\mathbf{1 k m}$ apart. How far apart are they after 10 s ?
\qquad 12. What is the area, in \mathbf{m}^{2}, of the shaded part of the rectangle? 4 m

\qquad 13. How many positive integers less than 400 can be created using only the digits 1,2 or 3 , with repetition of digits allowed?

$$
\text { Individual Round - Grade } 6
$$

Name: \qquad Team \# \qquad School: \qquad
14. A student may pay $\$ 1.50$ for a single bus ticket or $\$ 5.75$ for a package of 5 tickets. If a student requires 40 tickets, how much does she save by buying all of the tickets in packages of 5 rather than buying 40 single tickets?
15. The numbers $\mathbf{3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3}$ are written on separate cards and placed face down on a table. A card is chosen at random and flipped over. What is the probability that the number on this card is a prime number?

Individual Round - Grade 6

Name: \qquad Team \# \qquad School: \qquad

1. $5 / 10$
2. $2 / 3$
3. 20%
4. 10
5. 15
6. 52
7. 8
8. 5
9. 6
10. 34.95
11. 400
12. $5 / 11$
13. If the student were to buy 40 individual tickets, this would cost $40 \times \$ 1.50=\$ 60.00$. If the student were to buy the tickets in packages of 5 , she would need to buy $40 \div 5=8$ packages, and so this would cost $8 \times \$ 5.75=\$ 46.00$. Therefore, she would save $\$ 60.00-\$ 46.00=\$ 14.00$.
14. Of the given 11 numbers, the numbers $3,5,7,11$ and 13 are prime. $(4,6,8,10$ and 12 are not prime, since they are divisible by 2 , and 9 is not prime since it is divisible by 3.) Therefore, 5 of the 11 numbers are prime. Thus, if a card is chosen at random and flipped over, the probability that the number on this card is a prime number is $\mathbf{5 / 1 1}$.
